European Association of Science Editors # Рекомендации EASE (*Европейской* ассоциации научных редакторов) для авторов и переводчиков научных статей, которые должны быть опубликованы на английском языке Для увеличения эффективности международного научного взаимодействия статьи и другие научные публикации должны быть ПОЛНЫМИ, ЛАКОНИЧНЫМИ и ПОНЯТНЫМИ, как объяснено ниже. Это обобщенные, но не универсальные рекомендации, предназначенные для помощи авторам, переводчикам и редакторам. Применяя эти правила, необходимо руководствоваться здравым смыслом, поскольку совершенства достигнуть невозможно. #### Прежде всего: - Тщательно планируйте и осуществляйте ваше исследование (напр. Hengl et al. 2011). Не начинайте писать статью, пока у вас нет уверенности в том, что ваши результаты относительно стабильны и закончены (O'Connor 1991), и вы можете сделать надежные выводы. - До начала работы над статьей рекомендуется выбрать журнал, в который вы пошлете свою статью. Убедитесь, что читатели журнала являются вашей целевой аудиторией (Chipperfield et al. 2010). Получите инструкции для авторов и спланируйте статью таким образом, чтобы она соответствовала инструкции с точки зрения общего объема, формата, предпочитаемого журналом, требуемого/допустимого числа рисунков и т.п.. Рукописи должны быть ПОЛНЫМИ, т.е. в них не должна отсутствовать необходимая информация. Помните, что информация, которая расположена там, где читатели ожидают ее найти, легче интерпретируется (Gopen & Swan 1990). Например, нижеследующая информация должна быть включена в экспериментальные научные статьи. • Название: должно быть однозначным, понятным специалистам в других областях и отражать содержание статьи. Будьте точными, не пишите общими или неопределенными фразами (O'Connor 1991). Если это необходимо, упомяните в заголовке период И место исследования, международное научное название изучаемого экспериментальный или исследования (т.е. исследование конкретного - случая или рандомизированное контролируемое испытание). Нет необходимости повторять информацию в названии и в аннотации (они всегда публикуются вместе), хотя дублирование неизбежно. - Список авторов, т.е. всех людей, которые внесли значительный вклад в планирование, сбор данных или интерпретацию результатов, а также писали или проверяли и критиковали рукопись и согласны с последним ее вариантом и согласились быть ответственными за все аспекты работы (ІСМЈЕ 2013). Первыми указываются авторы, внесшие наибольший вклад. Имена авторов должны быть дополнены указанием их места работы (во время исследования) и фактическим адресом автора, по которому можно вести переписку. Должны быть перечислены адреса электронной почты всех авторов для того, чтобы с ними было легче связаться. - Аннотация: кратко объясните, почему было проведено исследование (ОБОСНОВАНИЕ), на какие вопрос(ы) получены ответы (ЦЕЛИ), каким образом было проведено исследование (МЕТОДЫ), что вы обнаружили (РЕЗУЛЬТАТЫ: главные данные, взаимоотношения между ними), вашу интерпретацию и заключения из результатов (ВЫВОДЫ). Аннотация должна отражать содержание статьи, поскольку для большинства читателей оно будет главным источником информации о данном исследовании. Вы должны использовать все ключевые слова в аннотации, чтобы облегчить он-лайн поиск вашей статьи теми, кто может быть заинтересован в ее результатах (многие базы данных включают только названия И аннотации). экспериментальной статье аннотация должна быть информативной и включать результаты. Только в обзорных работах, мета-анализах и других широкомасштабных публикациях введение быть индикативным, т.е. должно перечислять основные обсуждаемые вопросы, но не результаты (CSE 2014). Не ссылайтесь во введении на таблицы или рисунки, поскольку аннотации также публикуются отдельно от статьи. Не разрешены и ссылки на использованную литературу, если только в них нет абсолютной - необходимости (в этом случае необходимо в скобках разместить подробную информацию: автор, название, год и т.п.). Убедитесь, что вся информация во введении есть и в основном тексте статьи. (*См. Appendix: Abstracts*) - Список дополнительных ключевых слов (если требуется редакцией): включите все важные научные термины, которых нет в названии и аннотации. Ключевые слова должны быть точными. Добавляйте общие термины, только если ваше исследование имеет междисциплинарное значение (O'Connor 1991). В медицианских текстах используйте термины, которые можно найти в MeSH Browser. - Список аббревиатур (если требуется редакцией): дайте определения всем аббревиатурам, использованным в статье, за исключением понятных неспециалистам. - Введение: объясните, почему было необходимо провести исследование, укажите цели исследования, и на какой конкретный вопрос(ы) оно направлено. Начните с более общих соображений и постепенно сфокусируйтесь на вопрос(ах) вашего исследования. - Методы: подробно опишите, как было проведено исследование (т.е. область исследования, сбор критерии, источник анализируемого данных. материала, величина образца, количество измерений, возраст И пол *<u>VЧастников</u>* исследования, оборудование, анализ данных, использованные статистические тесты компьютерные программы). Необходимо рассмотреть все факторы, которые могли повлиять результаты исследования. Источники экспериментальных материалов, полученных от биобанков, следует упоминать c наименованиями идентификаторами, наличии таковых (Bravo et al. 2013). При цитировании метода, описанного не на английском языке или в недоступной публикации, подробно опишите его. Убедитесь, что ваше исследование соответствует этическим стандартам (напр. WMA 2013) относительно прав пациентов, исследований на животных, защиты окружающей среды и т.п. - Результаты: предоставьте новые результаты исследований (обычно, опубликованные данные не должны включаться в эту часть статьи). Все таблицы и рисунки должны быть упомянуты в основном тексте статьи в порядке, в котором они пронумерованы и расположены в тексте. Убедитесь, что статистический анализ данных адекватен (напр. Lang 2004). Не подделывайте и не искажайте любые данные и не исключайте никаких важных даннных; не манипулируйте изображениями создания ложного впечатления. Подобные манипуляции данных могут быть научным мошенничеством (см. СОРЕ flowcharts). - Обсуждение: дайте ответы на вопросы вашего исследования (перечисленные в конце аннотации) - и как можно более объективно сравните ваши новые результаты с опубликованными ранее. Обсудите их ограничения и выделите ваши основные выводы. Рассмотрите любые выводы, которые идут вразрез с вашей точки зрения. Для поддержки вашей позиции, используйте только методологически обоснованные доказательства (ORI 2009). В конце дискуссии или в отдельном разделе подчеркните ваши основные выводы и практическое значение вашего исследования. - Благодарности: упомяните всех, кто внес значительный вклад в ваше исследование, но не может рассматриваться в качестве соавторов и поблагодарите все источники финансирования. Рекомендуемая форма: "This work was supported by the Medical Research Council [grant number хххх]" Если специального финансирования не было, используйте фразу: "This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors." (RIN 2008). Если это необходимо, сообщите редакторам о других конфликтах интересов, т.е. финансовых или личных связях с издателем или с организацией, которая заинтересована публикации рукописи (Goozner et al. 2009). Если вы воспроизводите уже опубликованный материал (т.е. рисунки), получите разрешение обладателей авторских прав и упомяните их в подписи под рисунком или в секции благодарностей. Если вам владеющий иностранным помогал человек, языком профессионально (т.е. ваш редактор или переводчик), статистик, сборщики данных, ваши помощники вы должны их упомянуть для информационной открытости (ICMJE 2013, Graf et al. 2009). Должно быть объяснено, что они не несут ответственности за конечный вариант статьи. Вы должны убедиться в наличии согласия всех людей, упомянутых в настоящем разделе. (Cm. Appendix: Ethics) - Список литературы: убедитесь, предоставили данные ИЗ всех источников информации, взятой из других публикаций. В список литературы включите все необходимые для нахождения источников в библиотеке или в Интернете. Для публикаций не на английском языке сообщите их оригинальное необходимости название (B случае транслитерированное согласно правилам которого, английского языка), после возможности, сообщите перевод на английский в квадратных скобках (СSE 2014). Избегайте цитировать недоступные, принудительные и несоответствующие ссылки. Везде, процитируйте основные необходимо, статьи исследования вместо обзоров (DORA 2013). Неопубликованные данные в список литературы не включаются - если их необходимо упомянуть, объясните их источник в основном тексте статьи и получите разрешение от автора данных для их цитирования. - Другая структура статьи может быть оптимальней для теоретических публикаций, обзорных работ, исследований конкретных случаев и т.п. (напр. Gasparyan et al. 2011). - Некоторые публикации включают также аннотации или расширенное **резюме** на другом языке. Это очень важно во многих областях исследования. - Соблюдайте **инструкции журнала** для авторов с точки зрения длины резюме, стиля ссылок на источники литературы и т.п. Пишите ЛАКОНИЧНО, чтобы сохранить время рецензентов и читателей. - Не включайте информацию, которая не имеет отношения к вопросу(ам), определенным во введении. - копируйте части ваших более ранних публикаций и не посылайте одну и ту же рукопись одновременно в несколько журналов. В противном случае, вы можете нести ответсвенность за избыточную публикацию (см. COPE fowcharts). правило не распространяется предварительные публикации, такие, как тезисы конференций (O'Connor 1991, см. также BioMed того, policy). Более вторичные Central публикации приемлемы, если они предназначаются для совершенно другой аудитории (т.е. на другом языке или для специалистов и общей аудитории) и получено разрешение
редакторов обоих журналов (ІСМЈЕ 2013). Ссылки на первичные публикации должны быть приведены в сноске на титульном листе вторичной публикации. - Предпочтительно, чтобы информация, размещенная в одном из разделов, **не повторялась** в других разделах. Очевидные исключения это аннотация, подписи под рисунками и заключающий статью параграф. - Убедитесь, что все таблицы и рисунки необходимы. Данные, предстваленные в таблицах, не должны повторятся в рисунках и наоборот. Длинные списки данных не должны повторяться в тексте. - Подписи под таблицами и рисунками должны быть информативными, но не очень длинными. Если сходные данные представлены в нескольких таблицах или нескольких рисунках, формат подписи также должен быть сходным. - Очевидные утверждения лучше удалять (т.е. "Forests are very important ecosystems".), как и другие избыточные фрагменты (т.е. "It is well known that..."). - Если длинный научный термин часто повторяется, дайте определение его аббревиатуры при первом использовании в основном тексте статьи, а затем употребляйте аббревиатуру. - Если это необходимо, выразите сомнения, но избегайте излишней уклончивости (т.е. пишите - "возможно", а не "это может быть возможно". Однако, не делайте излишне общих выводов. - Если нет конкретных требований редакции, используйте цифры для всех номеров, т.е. и для целых номеров, состоящих из одной цифры, кроме нуля, единицы (без единиц измерения) и других случаев, в которых возможно недоразумение, т.е. в начале предложений или до аббревиатур, содержащих номера (CSE 2014). Для облегчения ПОНИМАНИЯ пишите ясно - текст должен быть легким для прочтения. Научное содержание - Четко отделите ваши оригинальные данные и гипотез от данных и гипотез других людей и ваших ранних публикаций - где это необходимо, дайте ссылки. Предпочтительно суммировать или пересказать текст из других источников. Это относится также и к переводам. При копировании текста буквально (напр. предложение или длинный текст), заключите его в кавычки (напр. ORI 2009, Kerans & de Jager 2010). противном случае вы можете плагиатором (см. COPE flowcharts) или самоплагиатором. - Будьте уверены, что используются правильные английские научные термины, предпочтительно на основании текстов, написанных носителями языка. Буквальный перевод часто неправилен (т.е. так называемые "фальшивые друзья переводчика" несуществующие слова, придуманные переводчиками). В случае сомнения проверьте определение в английском словаре, так как многие слова употребляются неправильно (напр. trimester, см. Baranyiová 1998). Вы можете также сделать поиск слова или фразы, например, в Википедии; затем сравнить результаты в вашем родном языке и английском, и определить, являются ЛИ значения предположительных эквивалентов одинаковыми. Однако, Википедия всегда является надежным источником информации. - Если слово используется преимущественно в переводах и лишь изредка в англоговорящих странах, рассмотрите возможность его замены более широко известным английским термином со сходным значением (т.е. "plant community" вместо "phytocoenosis"). Если у научного термина нет английского синонима, четко его определите и предложите приемлемый перевод на английский. - Дайте определение всех необычных или многозначных научных терминов во время первого их использования. Можно перечислить его синонимы, если они есть (для помощи при поиске), но позже для ясности постоянно используйте термин. только один использовать Предпочтительно формальную научными номенклатуру, установленную организациями (напр. EASE 2013). - **Избегайте неясных утверждений**, которые требуют от читателя предположений о том, что Вы имели в виду. (*Cm. Appendix: Ambiguity*) - При использовании процентов убедитесь, **что принято за 100%**. При описании коррелляций, взаимоотношений и т.п., ясно обозначьте какие значения сравниваются с какими. - Используйте единицы Системы Интернациональной (СИ) и градусы Цельсия. - В противоположность многим другим языкам в английском в десятичных дробях используется точка (не запятая). В числах, состоящих из 4 и более знаков слева или справа от такой точки используйте узкие пробелы (не запятые) между группами из 3 цифр с обеих сторон от точки (EASE 2013). - Не используйте римские цифры для обозначения столетий, месяцев и т.п., поскольку они редко встречаются в английском языке. Из-за различий между британским и американским обозначением дат (см. ниже), для обозначения месяцев лучше использовать целое слово или 3 первые буквы (CSE 2014). - Если переводятся малоизвестные географические названия, должно быть упомянуто и первоначальное название, если это возможно, т.е. "в Сельском лесу (Puszcza Kampinoska)". В этом случае читателям может быть полезна дополнительная информация о расположении, климате и т.п. - Необходимо помнить, что текст будут читать, большей частью, иностранцы, которые могут не знать специфические условия, классификации или концепции, хорошо известные в вашей стране; поэтому может быть необходимы дополнительные обьяснения (Ufnalska 2008). Например, распространенный сорняк Erigenosis annus в некоторых странах называется Stenactis annua, англоязычных текстах использоваться принятое В международном сообществе название, его синоним(ы) a добавляться в скобках. ### Структура текста - В общем случае предложения не должны быть слишком длинными и относительно простыми по структуре, подлежащее близко к сказуемому (Gopen & Swan 1990). Например, избегайте абстрактных существительных и пишите "X was measured..." вместо "Measurements of X carried out...". (См. Appendix: Simplicity) Не используйте слишком часто пассивные конструкции (напр. Norris 2011). При переводе изменяйте структуру предложений для того, чтобы передать смысл правильно или яснее (Burrough-Boenisch 2013). - Текст должен быть связным, логически организованным, и как следствие этого, удобочитаемым. (*Cm. Appendix: Cohesion*) - Предпочтительно, чтобы каждый параграф должен начинаться с вводного предложения, в котором формулируется тема сообщения, а следующие предложения развивают тему. - В противоположность некоторым другим языкам, в английском можно использовать параллельные конструкции, поскольку они облегчают понимание. Например, при сравнении сходных данных можно написать "It was high in A, medium in B, and low in C", а не "It was high in A, medium for B, and low in the case C". - Таблицы и рисунки должны быть легко доступны для понимания без обращения к тексту статьи. Не включайте неинформативные данные (т.е. удалите колонку, если она содержит одинаковые значения во всех рядах, это можно описать примечании). Используйте аббревиатуры только если это необходимо для согласованности или недостаточно места для целых слов. В подписях или примечаниях расшифруйте все аббревиатуры и символы, значение которых неочевидно (т.е. планки погрешностей могут обозначать стандартную девиацию, стандартную ошибку доверительный интервал). Используйте точки (не запятые) в десятичных дробях и подписывайте измерения единицы необходимости. - Рассмотрите возможность использования **текстовых таблиц** для описания небольшой группы данных (Kozak 2009). (*Cm. Appendix: Texttables*) - В длинных списках (аббревиатур и т.п.) лучше разделять отдельные объекты с помощью точки с запятой (;), которые являются промежуточным знаком между запятыми и точками. #### Язык имеет значение - Если нет необходимости в научных терминах, лучше использовать общеизвестные слова. В то время избегайте разговорных и идиоматических выражений, а также фразовых глаголов (т.е. find out, рау off), которые зачастую плохо понимают люди, для которых английский неродной язык (Geercken 2006). - Дайте определение аббревиатурам во время их первого употребления в основном тексте статьи (если читатели могут их не понять). Не используйте слишком много различных аббревиатур, поскольку текст будет трудно понять. Не аббревиируйте термины, редко используемые в вашем тексте. Избегайте аббревиатур в аннотации. - При описании проведения вашего исследования и результатов, полученных вами или другими исследователями, используйте прошедшее время. Настоящее время лучше использовать для общих утверждений и положений (т.е. статистическая достоверность, выводы) или описывая содержание - вашей статьи, особенно в таблицах и рисунках (Day & Gastel 2006). - Если нет конкретных требований редакции, не пишите о себе "the authors", так как это неоднозначно. Вместо этого при необходимости пишите "we" или "I" или используйте выражения "in this study", "our results" или "in our opinion" (напр. Hartley 2010, Norris 2011). Следует отметить, можно писать "this study" только если имеются в виду ваши новые данные. Если вы имеете в виду публикацию, упомянутую в предыдущем предложении, пишите "that study". Если вы упоминаете авторов цитированной публикации, пишите "those authors". - Помните, что в научных текстах слово "which" должно использоваться в неопределенных дополнениях, в то время как "that" в определяющих (т.е. имеющих значение "только те, которые"). - При использовании двусмысленных убедитесь, что их значение очевидно из контекста. Проверьте, что все глаголы согласованы с их существительными по числу (т.е. единственное или множественное) и понятно, к чему относятся местоимения (это очень важно для переведенных текстов). Помните, что некоторые существительные обладают особыми формами образования множественного числа. Appendix: Plurals) - Прочитайте текст вслух для проверки пунктуации. Все **интонационные паузы**, необходимые для правильного понимания должны выделяться запятыми или другими пунктуационными знаками (т.е. отметим разницу между "no more data are needed" и "no, more data are needed". - Будьте последовательны R орфографии, придерживаясь либо британских, либо американских правил написания слов и дат (т.е. "21 Jan 2009" в британском, "Jan 21, 2009" в английском). американском (См. Appendix: Spelling) Проверьте, использует ли журнал, в который вы собираетесь послать американскую или британскую орфографию и используйте соответствующую настройку проверке пунктуации и
орфографии. - Попросите вдумчивого коллегу прочитать весь текст, чтобы выявить неоднозначные фрагменты. Перевод/Translation: Victoria Doronina (doroninavicki@gmail.com), updated by Sergey Gorin (translation-center@intereconom.com) В подготовке инструкций приняли участие: Sylwia Ufnalska (initiator and editor), Paola De Castro, Liz Wager, Carol Norris, James Hartley, Françoise Salager-Meyer, Marcin Kozak, Ed Hull, Mary Ellen Kerans, Angela Turner, Will Hughes, Peter Hovenkamp, Thomas Babor, Eric Lichtfouse, Richard Hurley, Mercè Piqueras, Maria Persson, Elisabetta Poltronieri, Suzanne Lapstun, Mare-Anne Laane, David Vaux, Arjan Polderman, Ana Marusic, Elisabeth Heseltine, Joy Burrough-Boenisch, Eva Baranyiová, Tom Lang, Arie Manten, Pippa Smart, Armen Gasparyan ## Список использованной и дополнительной литературы: AuthorAID Resource Library. Available from http://www.authoraid.info/resource-library Baranyiová E. 1998. Misleading words or nobody is perfect. *European Science Editing* 24(2):46. Available from http://www.ease.org.uk/sites/default/files/ese_1998-baranyiova.pdf Beverley P. 2011. Word macros for writers and editors. Available from http://www.archivepub.co.uk/TheBook BioMed Central policy on duplicate publication. Available from http://www.biomedcentral.com/about/duplicatepublication Bless A, Hull E. 2008. *Reader-friendly biomedical articles: how to write them!* 3rd ed. Alphen a/d Rijn: Van Zuiden Communication. Bravo E, Cambon-Thomsen A, De Castro P, Mabile L, Napolitani F, Napolitano M, Rossi AM. 2013. Citation of bioresources in journal articles: moving towards standards. *European Science Editing* 39(2):36-38 Available from http://www.ease.org.uk/sites/default/files/essay_bioresources.pdf Burrough-Boenisch J. 2013. Editing texts by non-native speakers of English. In: European Association of Science Editors. *Science editors' handbook*. Smart P, Maisonneuve H, Polderman A, editors. Available from http://www.ease.org.uk/handbook/index.shtml Chipperfield L, Citrome L, Clark J, David FS, Enck R, Evangelista M, et al. 2010. Authors' Submission Toolkit: a practical guide to getting your research published. *Current Medical Research & Opinion* 26(8):1967-1982. Available from http://informahealthcare.com/doi/full/10.1185/03007995.2010.499344 [COPE flowcharts] Committee on Publication Ethics flowcharts. Available in many languages from http://www.publicationethics.org/resources/flowcharts [CSE] Council of Science Editors, Style Manual Committee. 2014. *Scientific style and format: the CSE manual for authors, editors, and publishers.* 8th ed. University of Chicago Press. Available from http://www.scientificstyleandformat.org/Home.html Day RA, Gastel B. 2006. *How to write and publish a scientific paper*. 6th ed. Cambridge: Cambridge University Press. do Carmo GMI, Yen C, Cortes J, Siqueira AA, de Oliveira WK, Cortez-Escalante JJ, et al. 2011. Decline in diarrhea mortality and admissions after routine childhood rotavirus immunization in Brazil: a time-series analysis. *PLoS Medicine* 8(4): e1001024. Available from http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1001024 [DORA] San Francisco Declaration on Research Assessment. 2013. Available from http://am.ascb.org/dora/files/SFDeclarationFINAL.pdf [EASE] European Association of Science Editors. 2012. EASE Toolkit for Authors. Available from http://www.ease.org.uk/publications/ease-toolkit-authors [EASE] European Association of Science Editors. 2013. Science editors' handbook. 2nd ed. Smart P, Maisonneuve H, Polderman A, editors. Available from http://www.ease.org.uk/handbook/index.shtml [EMAME] Eastern Mediterranean Association of Medical [EMAME] Eastern Mediterranean Association of Medical Editors. 2006. *Manual for editors of health science journals*. Available in Arabic, English, and French from http://www.emro.who.int/entity/emame/ EQUATOR Network. Available from http://www.equator-network.org/home/ Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD. 2011. Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. *Rheumatology* - *International* 31(11):1409-1417. Available from http://www.ease.org.uk/sites/default/files/writing-reviews.pdf - Geercken S. 2006. Challenges of (medical) writing for the multilingual audience. *Write Stuff* 15(2):45-46. Available from: http://medicalwriting.emwa.org/article/show/pdf/51/ - Goozner M, Caplan A, Moreno J, Kramer BS, Babor TF, Husser WC. 2009. A common standard for conflict of interest disclosure in addiction journals. *Addiction* 104:1779-1784. Available from http://www3.interscience.wiley.com/journal/122637800/abstract - Gopen GD, Swan JA. 1990. The science of scientific writing: if the reader is to grasp what the writer means, the writer must understand what the reader needs. *American Scientist* 78(6):550–558. Available from: http://www-stat.wharton.upenn.edu/~buja/sci.html - Graf C, Battisti WP, Bridges D, Bruce-Winkle V, Conaty JM, Ellison JM, et al., for the International Society for Medical Publication Professionals. 2009. Good publication practice for communicating company sponsored medical research: the GPP2 guidelines. *BMJ* 339:b4330. Available from http://www.bmj.com/cgi/content/full/339/nov27_1/b4330 - Gustavii B. 2008. *How to write and illustrate a scientific paper.* 2nd ed. Cambridge, New York: Cambridge University Press. - Hartley J. 2010. Citing oneself. *European Science Editing* 36(2):35-37. Available from http://www.ease.org.uk/sites/default/files/may_2010_362.pdf - Hengl T, Gould M, Gerritsma W. 2011. *The unofficial guide for authors: from research design to publication*. Wageningen, Arnhem. Available from http://edepot.wur.nl/178013 - [ICMJE] International Committee of Medical Journal Editors. 2013. Recommendations for the Conduct, Reporting, Editing, and Publication of Scholarly Work in Medical Journals. Available from http://www.icmje.org/urm_main.html - Kerans ME, de Jager M. 2010. Handling plagiarism at the editor's desk. *European Science Editing* 36(3): 62-66. http://www.ease.org.uk/sites/default/files/ese_aug10.pdf - Kozak M. 2009. Text-table: an underused and undervalued tool for communicating information. *European Science Editing* 35(4):103. Available from: http://www.ease.org.uk/sites/default/files/november_2009_354.pdf_ - Lang T. 2004. Twenty statistical errors even YOU can - find in biomedical research articles. *Croatian Medical Journal* 45(4):361-370. Available from http://www.cmj. hr/2004/45/4/15311405.htm - Masic I, Kujundzic E. 2013. *Science editing in biomedicine and humanities*. Sarajevo: Avicenna. - [MeSH Browser] Medical Subject Headings Browser. Available from: http://www.nlm.nih.gov/mesh/MBrowser.html - Norris CB. 2009. *Academic writing in English*. Helsinki: University of Helsinki. Available from http://www.helsinki.fi/ kksc/language.services/AcadWrit.pdf - Norris C. 2011. The passive voice revisited. *European Science Editing* 37(1):6-7. Available from http://www.ease.org.uk/sites/default/files/february_2011_371.pdf - O'Connor M. 1991. Writing successfully in science. London: Chapman & Hall. - [ORI] Office of Research Integrity. 2009. Avoiding plagiarism, self-plagiarism, and other questionable writing practices: a guide to ethical writing. Available from http://ori.hhs.gov/education/products/plagiarism/0.shtml - Research Methods Supercourse. Available from http://www.pitt.edu/~super1/ResearchMethods/index.htm - [RIN] Research Information Network. 2008. Acknowledgement of funders in journal articles. Available from: http://www.rin.ac.uk/our-work/research-funding-policy-and-guidance/acknowledgement-funders-journal-articles - Seifert KA, Crous PW, Frisvad JC. 2008. Correcting the impact factors of taxonomic journals by Appropriate Citation of Taxonomy (ACT). *Persoonia* 20:105. Available from http://www.persoonia.org/Issue/20/08.pdf - Strunk WJr, White EB. 2000. *The elements of style*. 4th ed. New York: Macmillan. - Tufte ER. 2001. *The visual display of quantitative information*, 2nd ed. Cheshire, CT: Graphics Press. - Ufnalska S. 2008. Abstracts of research articles: readers' expectations and guidelines for authors. *European Science Editing* 34(3):63-65. Available from http://www.ease.org.uk/sites/default/files/august_2008343.pdf - [WMA] World Medical Association. 2013. Declaration of Helsinki ethical principles for medical research involving human subjects. Available in English, Spanish, and French from http://www.wma.net/en/30publications/10policies/b3/ ## **Practical tips for junior researchers** - Consider publishing a review article once you have completed the first year of your PhD studies because: (1) you should already have a clear picture of the field and an up-to-date stock of references in your computer; (2) research results sometimes take a long time to get (in agronomy: 3 years of field experiments...); (3) journals love review articles (they tend to improve the impact factor); (4) the rejection rate of review articles is low (although some journals publish solicited reviews only, so you might want to contact the Editor first); (5) the non-specialist reader such as a future employer will understand a review article more easily than an original article with detailed results. - · Alternatively, publish meta-analyses or other database- - based research articles. - Each part/item of an article should preferably be "almost" understandable (and citable) without reading other parts. The average time spent reading an article is falling, so virtually no one reads from Title to References. This phenomenon is amplified by the "digital explosion", whereby search engines identify individual items, such as abstracts or figures, rather than intact articles. Written by Eric Lichtfouse eric.lichtfouse@dijon.inra.fr For more advice, see EASE Toolkit for Authors
(www.ease.org.uk/publications/ease-toolkit-authors) ## **Appendix: Abstracts** #### European Association of Science Editors # EASE ## Key elements of abstracts Researchers are quite often in a "box" of technical details – the "important" things they focus on day in and day out. As a result, they frequently lose sight of 4 items essential for any readable, credible, and relevant IMRaD¹ article: the point of the research, the research question, its answer, and the consequences of the study. To help researchers to get out of the box, I ask them to include 5 key elements in their article and in their abstract. I describe briefly the elements below and illustrate them with a fictitious abstract. **Key element 1 (BACKGROUND):** the point of the research – why should we care about the study? This is usually a statement of the BIG problem that the research helps to solve and the strategy for helping to solve it. It prepares the reader to understand the specific research question. **Key element 2 (OBJECTIVES):** the specific research question – the basis of credible science. To be clear, complete and concise, research questions are stated in terms of relationships between the variables that were investigated. Such specific research questions tie the story together – they focus on credible science. **Key element 3 (METHODS)**: a precise description of the methods used to collect data and determine the relationships between the variables. **Key element 4 (RESULTS)**: the major findings – not only data, but the RELATIONSHIPS found that lead to the answer. Results should generally be reported in the past tense but the authors' interpretation of the factual findings is in the present tense – it reports the authors' belief of how the world IS. Of course, in a pilot study such as the following example, the authors cannot yet present definitive answers, which they indicate by using the words "suggest" and "may". **Key element 5 (CONCLUSIONS)**: the consequences of the answers – the value of the work. This element relates directly back to the big problem: how the study helps to solve the problem, and it also points to the next step in research. Here is a fictitious example. #### Predicting malaria epidemics in Ethiopia Abstract BACKGROUND Most deaths from malaria could be prevented if malaria epidemics could be predicted in local areas, allowing medical facilities to be mobilized early. **OBJECTIVES** As a first step toward constructing a predictive model, we determined correlations between meteorological factors and malaria epidemics in Ethiopia. METHODS In a retrospective study, we collected meteorological and epidemic data for 10 local areas, covering the years 1963-2006. Poisson regression was used to compare the data. RESULTS Factors AAA, BBB, and CCC correlated significantly (P<0.05) with subsequent epidemics in all 10 areas. A model based on these correlations would have a predictive power of about 30%. conclusions Meteorological factors can be used to predict malaria epidemics. However, the predictive power of our model needs to be improved and validated in other areas. This understandable and concise abstract forms the "skeleton" for the entire article. A final comment: This example is based on an actual research project and, at first, the author was in a "box" full of the mathematics, statistics, and computer algorithms of his predicting model. This was reflected in his first version of the abstract, where the word "malaria" never appeared. Written by Ed Hull edhull@home.nl (for more information, see Bless and Hull 2008) $^{^{\}rm 1}{\rm IMRaD}$ stands for Introduction, Methods, Results and Discussion. ## **Appendix: Ambiguity** European Association of Science Editors # FASE. ## **Empty words and sentences** Many English words are empty – they do not add information but require the reader to fill in information or context to be understood. The reader is forced to supply his or her own interpretation, which could be different from what you, the writer, mean. Empty words seem to give information and uncritical readers do not notice them – that is why they work so well for marketing texts. However, empty words do not belong in articles reporting scientific research. Empty words require the reader to supply the meaning – very dangerous. Concise and clear communication requires words that convey specific meaning. #### **Examples** It is important that patients take their medicine. • Note that to a physician the meaning is probably entirely different than to the sales manager of a pharmaceutical company. "Important" is one of our best-loved, but empty, words – it fits every situation. *The patient was treated for XXX.* "Treated" is empty; we do not know what was done. One reader could assume that the patient was given a certain medicine, while another reader could assume that the patient was given a different medicine. Perhaps the patient was operated on, or sent to Switzerland for a rest cure. *The patient reacted well to the medicine.* "Reacted well" gives us a positive piece of information, but otherwise it is empty; we do not know how the patient reacted. The patient's blood pressure was low. • We interpret "high/low blood pressure" to mean "higher/lower than normal", but we, the readers, have to supply that reference standard. A more concise statement is: *The patient's blood pressure was 90/60.* Empty words and phrases not only require the reader to supply the meaning, they also contribute to a wordy blahblah text. In scientific articles they destroy credibility. Here are some examples. It has been found that the secondary effects of this drug include... • Better: *The secondary effects of this drug include...(ref.).* Or, if these are your new results: *Our results show that the secondary effects of this drug include...* We performed a retrospective evaluation study on XXX. • "Performed a study" is a much overused and rather empty phrase. Better: We retrospectively evaluated XXX. More examples that require the reader to supply information if it is not evident from the context: - quality - good/bad - high/low - large/small - long/short - proper/properly (e.g. "...a proper question on the questionnaire...") - As soon as possible... Written by Ed Hull edhull@home.nl ## **Appendix: Cohesion** European Association of Science Editors ## EASE ## Cohesion – the glue The word "cohesion" means "unity", "consistency", and "solidity". Building cohesion into your text makes life easier for your readers – they will be much more likely to read the text. Cohesion "glues" your text together, focusing the readers' attention on your main message and thereby adding credibility to your work. Think of your text as a motorcycle chain made up of separate links, where each sentence is one link. A pile of unconnected links is worthless – it will never drive your motorcycle. Similarly, a pile of unconnected sentences is worthless – it will never drive your message home. To build a cohesive text, you have to connect your sentences together to make longer segments we call paragraphs. A cohesive paragraph clearly focuses on its topic. You then need to connect each paragraph with the previous paragraph, thereby linking the paragraph topics. Linking paragraphs results in building cohesive sections of your article, where each section focuses on its main topic. Then, link the sections to each other and, finally, connect the end of your article to the beginning, closing the loop – now the chain will drive our motorcycle. Let's look at linking techniques. #### Basic guidelines for building a cohesive story: - 1. Link each sentence to the previous sentence. - 2. Link each paragraph to the previous paragraph. - 3. Link each section to the previous section. - 4. Link the end to the beginning. ### **Linking techniques** Whether you want to link sentences, paragraphs, sections or the beginning to the end, use 2 basic linking techniques: - Use linking words and phrases, such as: however, although, those, since then... An example: Our research results conflict with those of Smith and Jones. To resolve those differences we measured ... - Repeat key words and phrases do not use synonyms. In scientific writing, repetition sharpens the focus. Repetition especially helps the reader to connect ideas that are physically separated in your text. For example: Other investigators have shown that microbial activity can cause immobilization of labile soil phosphorus. Our results suggest that, indeed, microbial activity immobilizes the labile soil phosphorus. The example below illustrates how to link your answer to your research question, thus linking the Discussion with the Introduction. In the Introduction, the research hypothesis is stated. For example: The decremental theory of aging led us to hypothesize that older workers in "speed" jobs perform less well and have more absences and more accidents than other workers have. In the Discussion, the answer is linked to the hypothesis: Our findings do not support the hypothesis that older workers in speed jobs perform less well and have more absences and more accidents than other workers have. The older workers generally earned more, were absent less often, and had fewer accidents than younger workers had. Furthermore, we found no significant difference between... Written by Ed Hull edhull@home.nl ## **Appendix: Ethics** European Association of Science Editors ## **Publication ethics checklist for authors** best to avoid errors in experimental design, data presentation, interpretation, etc. However, if we discover any serious error in the MS (before or after EXPLANATION: obligatory declarations applying to all publication), we will alert the editor promptly. manuscripts are printed in bold. □ None of our data presented in this MS has been Original or acceptable secondary publication fabricated or distorted, and no valid data have been ☐ No part of this manuscript (MS) has been published, excluded. Images shown in figures
have not been manipulated to make a false impression on readers. except for passages that are properly cited. ☐ Results of this study have been interpreted objectively. ☐ An abstract/summary of this MS has been published Any findings that run contrary to our point of view in..... are discussed in the MS. \Box The article does not, to the best of our knowledge, contain anything that is libellous, illegal, infringes ☐ This MS has already been published in anyone's copyright or other rights, or poses a threat to public safety. but inlanguage. A full citation to **Acknowledgements** the primary publication is included, and the copyright ☐ All sources of funding for the study reported in this owner has agreed to its publication in English. MS are stated. ☐ No part of this MS is currently being considered for ☐ All people who are not listed as authors but publication elsewhere. contributed considerably to the study reported in ☐ In this MS, original data are clearly distinguished this MS or assisted in its writing (eg author's editors, from published data. All information extracted from translators, medical writers) are mentioned in the other publications is provided with citations. Acknowledgements. ☐ All people named in the Acknowledgements have **Authorship** agreed to this. However, they are not responsible for ☐ All people listed as authors of this MS meet the the final version of this MS. authorship criteria, ie they contributed substantially ☐ Consent has been obtained from the author(s) of to study planning, data collection or interpretation unpublished data cited in the MS. of results and wrote or critically revised the MS and ☐ Copyright owners of previously published figures or approved its final submitted version and agree to be tables have agreed to their inclusion in this MS. accountable for all aspects of the work (ICMJE 2013). ☐ All people listed as authors of this MS are aware of it Conflict of interest and have agreed to be listed. ☐ All authors of this study have signed a conflict of ☐ No person who meets the authorship criteria has interest statement and disclosed any financial or been omitted. personal links with people or organizations that have **Ethical experimentation and interpretation** a financial interest in this MS³. ☐ The study reported in this MS involved human participants and it meets the ethical principles of the Date:..... Declaration of Helsinki (WMA 2013). Data have been disaggregated by sex (and, whenever possible, by race). Signature:..... ☐ The study reported in this MS meets the Consensus MS title: Author Guidelines on Animal Ethics and Welfare for Veterinary Journals² about humane treatment of animals and has been approved by an ethical review committee. Compiled by Sylwia Ufnalska ☐ The study reported in this MS meets other ethical sylwia.ufnalska@gmail.com principles, namely ☐ I and all the other authors of this MS did our ² See www.veteditors.org/ethicsconsensusguidelines.html ³ See www.icmje.org/coi_disclosure.pdf ## **Appendix: Plurals** European Association of Science Editors # FASF ## **Examples of irregular plurals deriving from Latin or Greek** | Singular | Plural | Examples | | |----------|-------------------------------|--|--| | -a | -ae
rarely -ata | alga – algae, larva – larvae
stoma – stomata | | | -ex | -ices | index – indices (or indexes*)
apex – apices (or apexes*) | | | -ies | -ies | species, series, facies | | | -is | -es | axis – axes, hypothesis – hypotheses | | | -ix | -ices | appendix – appendices (or appendixes*)
matrix – matrices (or matrixes*) | | | -on | -a | phenomenon – phenomena
criterion – criteria | | | -um | <i>-a</i> | datum – data**, bacterium – bacteria | | | -us | -i
rarely -uses
or -era | locus – loci, fungus – fungi (or funguses*)
sinus – sinuses
genus – genera | | ^{*} Acceptable anglicized plurals that are also listed in dictionaries. It must be remembered that some nouns used in everyday English also have irregular plural forms (e.g. woman – women, foot – feet, tooth – teeth, mouse – mice, leaf – leaves, *life – lives, tomato – tomatoes*) or have no plural form (e.g. *equipment, information, news*). For more examples, see CSE (2014). If in doubt, consult a dictionary. Compiled by Sylwia Ufnalska sylwia.ufnalska@gmail.com ^{**} In non-scientific use, usually treated as a mass noun (like *information*, etc.) ## **Appendix: Simplicity** #### European Association of Science Editors ## Examples of expressions that can be simplified or deleted (\varnothing) | Long or (sometimes) wrong | Better choice (often) | | |---|--|--| | accounted for by the fact that | because | | | as can be seen from Figure 1, substance Z reduces twitching | substance Z reduces twitching (Fig. 1) | | | at the present moment | now | | | bright yellow in colour | bright yellow | | | conducted inoculation experiments on | inoculated | | | considerable amount of | much | | | despite the fact that | although | | | due to the fact that | because | | | for the reason that | because | | | if conditions are such that | if | | | in a considerable number of cases | often | | | in view of the fact that | because | | | it is of interest to note that | Ø | | | it may, however, be noted that | but | | | large numbers of | many | | | lazy in character | lazy | | | methodology | methods | | | owing to the fact that | because | | | oval in shape | oval | | | prior to | before | | | taken into consideration | considered | | | terminate | end | | | the test in question | this test | | | there can be little doubt that this is | this is probably | | | to an extent equal to that of X | as much as X | | | utilize | use | | | whether or not | whether | | Based on O'Connor (1991) ## **Appendix: Spelling** ## European Association of **Editors** ## **Examples of differences between British and American spelling** | British English | American English | |--|--| | -ae- | -е- | | e.g. aetiology, faeces, haematology | e.g. etiology, feces, hematology | | -ce in nouns, -se in verbs e.g. defence, licence/license, practice/practise | -se in nouns and verbs e.g. defense, license (but practice as both noun and verb) | | -ise or -ize [⋆] | -ize | | e.g. organise/organize | e.g. organize | | -isation or -ization* | -ization | | e.g. organisation/organization | e.g. organization | | -lled, -lling, -llor, etc.
e.g. labelled, travelling, councillor
(but fulfil, skilful) | -led, -ling, -lor, etc.
e.g. labeled, traveling, councilor
(but fulfill, skillful) | | - oe -
e.g. diarrhoea, foetus, oestrogen | -e-
e.g. diarrhea, fetus, estrogen | | -ogue
e.g. analogue, catalogue | -og or -ogue
e.g. analog/analogue, catalog/catalogue | | -our | -or | | e.g. colour, behaviour, favour | e.g. color, behavior, favor | | -re | -er | | e.g. centre, fibre, metre, litre (but meter for a measuring instrument) | e.g. center, fiber, meter, liter | | -yse | -yze | | e.g. analyse, dialyse | e.g. analyze, dialyze | | alumin ium | alumin um or aluminium** | | grey | gr ay | | m ou ld | m o ld | | programme (general) or program (computer) | progra m | | sul ph ur or sul f ur** | sulfur | ^{*}One ending should be used consistently. For more examples, see CSE (2014). If in doubt, consult a punctuation, etc. However, those differences are outside the dictionary. Obviously, American and British English slightly differ not only in spelling but also in word use, grammar, scope of this document. Compiled by Sylwia Ufnalska sylwia.ufnalska@gmail.com ^{**}Recommended by the International Union of Pure and Applied Chemistry and the Royal Society of Chemistry. ## **Appendix: Text-tables** European Association of Science Editors ## Text-tables – effective tools for presentation of small data sets Arranging statistical information in a classic table and referring to it elsewhere means that readers do not access the information as immediately as they would when reading about it within the sentence. They have to find the table in the document (which may be on another page), losing some time. This slightly decreases the strength of the information. Quicker access to the information can be achieved within a sentence, but this is not an effective structure if more than 2 numbers are to be compared. In such situations, a "texttable" appears to be ideal for communicating information to the reader quickly and comprehensibly (Tufte 2001). The text-table is a simple table with no graphic elements, such as grid lines, rules, shading, or boxes. The text-table is embedded within a sentence, so no reference to it is needed. Keeping the power of tabular arrangements, text-tables immediately convey the message. Look at the following examples. #### **Original sentence:** Iron concentration means (±standard deviation) were as follows: 11.2±0.3 mg/dm³ in sample A, 12.3±0.2 mg/dm³ in sample B, and 11.4±0.9 mg/dm³ in sample C. #### **Modified:** Iron concentration means (±standard deviation, in mg/dm³) were as follows: sample B 12.3±0.2 sample C 11.4±0.9 sample A 11.2±0.3 #### Original sentence (do Carmo et al. 2011): "Prior to rotavirus vaccine introduction, there was a trend of declining diarrhea-related mortality among children younger than 1 y (relative reduction [RR] = 0.87/y; 95% CI 0.83-0.94; p < 0.001), 1 to < 2 y of age (RR = 0.96/y; 95% CI 0.91-1.02; p = 0.23) and 2 to 4 y of age (RR = 0.93/y; 95% CI 0.87-1.00; p = 0.06)." #### Modified: Prior to rotavirus vaccine introduction, there was a trend of declining diarrhea-related
mortality among children in all age groups (RR stands for relative reduction per year): < 1 y RR = 0.87 (95% CI 0.83-0.94; p < 0.001) 1 to < 2 y RR = 0.96 (95% CI 0.91-1.02; p = 0.23) 2 to 4 y RR = 0.93 (95% CI 0.87-1.00; p = 0.06) #### Some rules for arranging text-tables - 1. The larger a text-table is, the less power it has. - 2. The sentence that precedes the text-table acts as a heading that introduces the information the text-table represents, and usually ends with a colon. Text-tables should have neither headings nor footnotes. - 3. Indentation of text-tables should fit the document's layout. - 4. Occasional changes in font (such as italics, bold, a different typeface) may be used, but with caution. They can, however, put some emphasis on the tabular part. - 5. Do not use too many text-tables in one document or on one page. - 6. In addition to the above rules, apply rules for formatting regular tables. For example, numbers should be given in 2-3 effective digits; ordering rows by size and their correct alignment will facilitate reading and comparison of values; space between columns should be neither too wide nor too narrow. Written by Marcin Kozak nyggus@gmail.com (for more information, see Kozak 2009) ## **About EASE** #### European Association of Science Editors # EASE ## Background information about EASE and the EASE Guidelines The European Association of Science Editors (EASE) was formed in May 1982 at Pau, France, from the European Life Science Editors' Association (ELSE) and the European Association of Earth Science Editors (Editerra). Thus in 2012 we celebrated the 30th anniversary of our Association. EASE is affiliated to the International Union of Biological Sciences (IUBS), the International Union of Geological Sciences (IUGS), the International Organization for Standardization (ISO). Through its affiliation to IUBS and IUGS, our Association is also affiliated to the International Council for Science (ICSU) and is thereby in formal associate relations with UNESCO. EASE cooperates with the International Society for Addiction Journal Editors (ISAJE), International Association of Veterinary Editors (IAVE), International Society of Managing and Technical Editors (ISMTE), the Council of Science Editors (CSE), and the Association of Earth Science Editors (AESE) in North America. Our other links include the African Association of Science Editors (AASE), the Association of Learned and Professional Society Publishers (ALPSP), the European Medical Writers Association (EMWA), the Finnish Association of Science Editors and Journalists (FASEJ), Mediterranean Editors and Translators (MET), the Society of English-Native-Speaking Editors (Netherlands) (SENSE), and the Society for Editors and Proofreaders (SfEP). We have major conferences every 2-3 years in various countries. EASE also organizes occasional seminars, courses, and other events between the conferences. Since 1986, we publish a journal, now entitled *European Science Editing*. It is distributed to all members 4 times a year. It covers all aspects of editing and includes original articles and meeting reports, announces new developments and forthcoming events, reviews books, software and online resources, and highlights publications of interest to members. To facilitate the exchange of ideas between members, we also use an electronic EASE Forum, the EASE Journal Blog, and our website (www.ease.org.uk). In 2007, we issued the *EASE statement on inappropriate use of impact factors*. Its major objective was to recommend that "journal impact factors are used only – and cautiously – for measuring and comparing the influence of entire journals, but not for the assessment of single papers, and certainly not for the assessment of researchers or research programmes either directly or as a surrogate". In 2010, we published EASE Guidelines for Authors and Translators of Scientific Articles. Our goal was to make international scientific communication more efficient and help prevent scientific misconduct. This document is a set of generalized editorial recommendations concerning scientific articles to be published in English. We believe that if authors and translators follow these recommendations before submission, their manuscripts will be more likely to be accepted for publication. Moreover, the editorial process will probably be faster, so authors, translators, reviewers and editors will then save time. EASE Guidelines are a result of long discussions on the EASE Forum and during our 2009 conference in Pisa, followed by consultations within the Council. The document is updated annually and is already available in 21 languages: Arabic, Bangla, Bosnian, Bulgarian, Chinese, Croatian, Czech, English, Estonian, French, German, Hungarian, Italian, Japanese, Korean, Persian, Polish, Portuguese (Brazilian), Romanian, Russian, Spanish, and Turkish. The English original and its translations can be freely downloaded as PDFs from our website. We invite volunteers to translate the document into other languages. Many institutions promote *EASE Guidelines* (e.g. see the European Commission Research & Innovation website), and many articles about this document have been published. Scientific journals also help in its popularization, by adding at the beginning of their instructions for authors a formula like: Before submission, follow *EASE Guidelines for Authors and Translators*, freely available at www.ease.org.uk/publications/author-guidelines in many languages. Adherence should increase the chances of acceptance of submitted manuscripts. In 2012 we launched the EASE Toolkit for Authors, freely available on our website. The Toolkit supplements EASE Guidelines and includes more detailed recommendations and resources on scientific writing and publishing for less experienced researchers. Besides, EASE participated in the sTANDEM project (www.standem.eu), concerning standardized tests of professional English for healthcare professionals worldwide. Our Association also supports the campaigns Healthcare Information For All by 2015 (www.hifa2015.org) and AllTrials (www.alltrials.net). For more information about our Association, member's benefits, and major conferences, see the next page and our website. ## European Association of Science **Editors** ## Skills-Communication-Fellowship EASE is an internationally oriented community of individuals from diverse backgrounds, linguistic traditions, and professional experience, who share an interest in science communication and editing. Our Association offers the opportunity to **stay abreast** of trends in the rapidly changing environment of scientific publishing, whether traditional or electronic. As an EASE member, you can sharpen your editing, writing and thinking skills; broaden your outlook through encounters with people of different backgrounds and experience, or deepen your understanding of significant issues and specific working tools. Finally, in EASE we have fun and enjoy learning from each other while upholding the highest standards ## EASE membership offers the following benefits - A quarterly journal, **European Science Editing**, featuring articles related to science and editing, book and web reviews, regional and country news, and resources - An electronic forum and EASE journal blog for exchanging ideas - A major conference every 2-3 years - Seminars and workshops on hot topics - Science Editors' Handbook, covering everything from on-screen editing to office management, peer review, and dealing with the media - **Advertising of your courses or services** free of charge on the EASE website - Discounts on **job advertisements** on the EASE website - Opportunities to share problems and solutions with kindred spirits - Good networking and contacts for freelancers - Chances to meet **international colleagues** from a range of disciplines - Leads for jobs, training, and employment options - **Discounts** on editorial software, courses, etc. #### Our Members EASE welcomes members from every corner of the world. They can be found in 50 countries: from Australia to Venezuela by way of China, Russia and many more. EASE membership cuts across many disciplines and professions. Members work as commissioning editors, academics, translators, publishers, web and multi-media staff, indexers, graphic designers, statistical editors, science and technical writers, author's editors, journalists, proofreaders, and production personnel. ## **Major Conferences** 2014 **Split**, Croatia 2012 **Tallinn**, Estonia (**30th Anniversary**) 2009 **Pisa**, Italy 2006 **Kraków**, Poland 2003 **Bath**, UK 2003 **Halifax**, Nova Scotia, Canada (joint meeting with AESE) 2000 **Tours**, France 1998 Washington, DC, USA (joint meeting 1982 Pau, France with CBE and AESE) 1997 **Helsinki**, Finland 1994 **Budapest**, Hungary 1991 **Oxford**, UK 1989 Ottawa, Canada (joint meeting with CBE and AESE) 1988 Basel, Switzerland 1985 **Holmenkollen**, Norway 1984 Cambridge, UK